VIRUS BULLETIN

VIRUS ANALYSIS 1
DO THE MACARENA

Peter Ferrie
Symantec Security Response, USA

On 31 October 2006 we received a sample of the first
parasitic infector of Mach-O files, OSX/Macarena. The file
had previously been uploaded to a popular VX site. In
contrast to OSX/Leap, which relied on a resource fork to
contain the virus code, Macarena understands the Mach-O
file format sufficiently well to parse the necessary structures
correctly and inject its code directly into a file.

MACH-O FORMAT

Every Mach-O file begins with a header structure. That
structure is called the mach_header. It begins with a magic
number, whose value depends on the architecture on which
the Mach-O file will execute. Though it is declared as a
32-bit value, it is easier to consider it as a sequence of four
bytes. Thus, for the 32-bit Intel x86 architecture, the value is
0xCE 0xFA OxED OxFE. For the 32-bit PowerPC architecture,
the value is OXFE OxED OxFA 0xCE (‘feed face’). For the
64-bit PowerPC architecture (currently the only supported
64-bit format), the value is OxFE OXxED OxFA 0xCF.

Following the magic number is a value specifying the CPU
family. For the Intel architecture, the value is 7. For the
32-bit PowerPC architecture, the value is 0x12. For the
64-bit PowerPC architecture, the value is 0x1000012. While
the Intel and PowerPC architectures are the most common
types that will be seen, other CPU values can be specified,
such as the VAX, Motorola 680x0, MIPS, ARM, and the
Sparc. These CPU values exist because the underlying
operating system is based on a variant of BSD, which
supports these CPUs. There is also a value that specifies the
CPU subtype, to specify the required CPU more exactly.
For the Intel and PowerPC architectures, a special value
exists to specify that the file can run on any member of that
architecture family.

The filetype field specifies the internal file format. The three
most common types are: Object, Executable and Library.
There are other types, such as Core, which usually contains
crash-dump information; and Symbol, which contains
symbol information for a corresponding binary file.

The next two fields relate to the array of ‘load commands’
that follow the mach_header structure. The first field
contains the number of those load commands, and the
second field contains their size.

The last field in the 32-bit mach_header structure contains a
set of flags that describe some optional characteristics that
can affect the loading of the file (the 64-bit PowerPC format

has an additional reserved field for alignment purposes, but
is otherwise identical to the 32-bit format). Most of the flags
relate to file linking, and their effects are not relevant to the
description of the virus.

Load commands exist to allow a file to specify various
different characteristics within the file, including the
memory layout and contents. Some of these characteristics
include 32-bit and 64-bit segment descriptions, symbol
table descriptions, dynamic library descriptions, dynamic
linker descriptions, entrypoints for executables and libraries,
and framework descriptions. Each load command contains a
field that specifies the type of the command that follows,
and the size of the command that follows. This allows an
application to skip any command that it does not
understand, or that it does not find interesting.

As far as the virus is concerned, only the segment
descriptions and the executable entrypoint are relevant.

SEGMENTS

Segments are described by a structure called the
segment_command. The segment_command structure
begins with a segment name, followed by the address and
size of the segment itself. There are two address fields, and
two size fields. The first address and size fields are the
virtual values (the address and size in memory), the second
address and size fields are the physical values (the offset
and size in the file). The term ‘segment’ in Mach-O files is
roughly equivalent to the term ‘section’ in the Windows
Portable Executable format (but in Portable Executable
files, the address and size fields are in the reverse order).
Interestingly, Mach-O files also contain ‘sections’, and are
described in detail below.

All segments must be aligned on a 4kb boundary, otherwise
a bus error occurs when attempting to load them. This is
documented in Apple’s ABI for Mach-O files.

Following the address and size fields are two protection
fields. The first field specifies the maximum protection that
a segment can acquire. The second field specifies the initial
protection that a segment can acquire. The possible
protection values are: Read, Write and Execute. Currently,
OSX does not implement “WAX’ protection (a method for
the mutual exclusion of writable and executable protections,
to limit the ability of some types of exploits to execute),
though this might be implemented in the future. The first
version of Macarena uses Read/Write/Execute protection
for the segment in which it resides. Perhaps in response to
the possibility of “W”X’, the second version of Macarena
uses Read/Execute protection alone.

The next field in the segment_command structure contains
the number of section data structures that follow the current

o



segment_command structure. The final field in the
segment_command structure is a set of flags. One possible
flag specifies that the segment should be loaded to the top of
memory; another possible flag specifies that the segment
contains no relocated data.

The 64-bit version of the segment_command structure is
identical in format to the 32-bit version of the
segment_command structure, but with all of the address and
size fields expanded from 32 bits to 64 bits.

SECTIONS

Sections are regions of memory that subdivide a segment.
They are described by a section structure, and the sections
within any given segment follow the segment_command
structure immediately. Sections begin with a section name,
followed by the name of the segment that contains it. The
next four fields are the address in memory, the size and
offset in the file, and the section alignment. The next two
fields contain the offset of any relocation data, and the
number of relocation items. The final three fields are a set
of flags, and two fields whose interpretation depends on the
type of section. Usually these last two fields will contain a
value of zero.

The 64-bit version of the section structure is identical in
format to the 32-bit version of the section structure, but with
only the address and size fields expanded from 32 bits to 64
bits. This causes a slight limitation: while a segment can
refer to file data beyond the 4Gb range, a section cannot.

It is legal to have a segment that contains no sections. In
fact, most files contain an example of this: the

__ PAGEZERO segment describes a 4kb region of memory
with no protection attributes set. It is intended to contain no
file data, and thus be simply a virtual memory region that
will cause an exception if it is accessed for any reason. Its
purpose is to allow interception of certain invalid pointer
usage, since that is a sign of a programming bug.

DOING THE MACARENA

While the _ PAGEZERO segment is intended to contain no
file data (size in file field has a value of zero), there is no
reason why it cannot contain file data. Since it is really a
segment like any other, if the file offset and size fields are
set to any legal value, and if the segment protection flags are
changed to at least Read, the segment becomes accessible. If
the segment protection flags are changed to Executable as
well, then code can be executed directly from there.

This is exactly what Macarena does. When infecting a file,
it pads the file size to a multiple of 4kb (a segment
requirement, as noted above), then appends itself. The

VIRUS BULLETIN

_ PAGEZERO segment is altered to point to the virus code
that starts immediately after the padding, and the segment
protection flags are changed as described above, depending
on the version of the virus. The change to the segment
protection flags acts as the infection marker.

THREADS

The final piece of the puzzle involves how the virus gains
control. The method is straightforward — the UnixThread
load command contains the initial values for all of the CPU
registers for the specified architecture. This includes the
Instruction Pointer (EIP for the Intel architecture, and SRRO
for the PowerPC architecture). By altering the Instruction
Pointer register to the required virtual address, the code at
that location will be executed when the file is loaded.
Macarena changes the Instruction Pointer register to zero,
the start of the _ PAGEZERO segment. This is apparently
an unexpected value for some tools such as GDB and IDA,
with the result that the virus code is not shown.

LIFE, THE UNIVERSE, AND EVERYTHING

Macarena is a simple virus. When executed, it enumerates
the files in the current directory, and for any file of normal
executable type, the virus will attempt to infect it, if it has
not been infected already. This algorithm was obviously
sufficiently simple for someone to learn enough PowerPC
assembler to port and release a PowerPC version of it a
week later. The PowerPC version is functionally identical to
the Intel version, apart from infecting files for the 32-bit
PowerPC architecture instead.

Universal files describe multiple architectures, allowing an
executable to run on multiple platforms. They are not
actually Mach-O files themselves. Rather, they are archives
that contain multiple Mach-O files. Since this is the more
common format for files on the OSX platform, it is likely
that we will see viruses that understand the Universal file
format and can infect the target architecture within them.

If that should happen, we might need to learn some new
moves.

OSX/Macarena

Type: Parasitic, direct-action Mach-O infector.
Size: 528 bytes (.A), 504 bytes (.B), 840 bytes
(PPC).

Payload: None.
Removal: Delete infected files and restore them

from backup.





